If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x-3136=0
a = 1; b = 20; c = -3136;
Δ = b2-4ac
Δ = 202-4·1·(-3136)
Δ = 12944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12944}=\sqrt{16*809}=\sqrt{16}*\sqrt{809}=4\sqrt{809}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{809}}{2*1}=\frac{-20-4\sqrt{809}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{809}}{2*1}=\frac{-20+4\sqrt{809}}{2} $
| 8(x-9)=8-2x | | 5(x-10)=4x+50 | | 53+5(3−q)=58 | | 79(10x−9)=63 | | -4(3x)+3(x-1)=-3 | | y-5/y+3=y+6/y-2 | | X5x+15=35 | | 5x+25=88 | | -2(x2)-3(5-x)=2(3x-4x)+1 | | 2/3z+1/6z=1/4 | | 5x+25=-8888 | | 5x/3-4=2x/3 | | x9+2=74 | | -2(x2)-3(5-x)=2(3x4x)+1 | | –7x+15–3x=2x–9 | | (4x-6)/(7)=8 | | 60+2.50x=260 | | 5n-3n=-1 | | (3x-6)/(4)=9 | | 18x2+29x=5 | | -7(1-x-2)-(-3-x)=(2x-1) | | 10x+13–4x=8x–3 | | 5t(t+12)=0 | | r-9=-16 | | 88/d=8d | | -4(3-x-(-3-5x)=-1+X | | 10+11=x+18 | | j-9=-1 | | 2^3x+1/8^2x=2^3x | | 0=6q | | 5x-9+6x=13 | | 1=r+7 |